Early Earth and Deep Time

Tsuno et al., 2018 GCA

Tsuno, K.^, Grewal, D.S.* & Dasgupta, R. (2018). Core-mantle fractionation of carbon in Earth and Mars: The effects of sulfur. Geochimica et Cosmochimica Acta 238: 477-495. doi: 10.1016/j.gca.2018.07.010

Carter and Dasgupta, 2018 CG

Carter, L.B.* & Dasgupta, R. (2018). Decarbonation in the Ca-Mg-Fe carbonate system at mid-crustal pressure as a function of temperature and assimilation with arc magmas – Implications for long-term climate. Chemical Geology 492: 30-48. doi:10.1016/j.chemgeo.2018.05.024

Saha et al., 2018 G-Cubed

Saha, S.*, Dasgupta, R. & Tsuno, K.^ (2018). High pressure-temperature phase relations of a depleted peridotite fluxed by CO2-H2O-bearing siliceous melts and the origin of mid-lithospheric discontinuity. Geochemistry, Geophysics, Geosystems 19: 595-620. doi:10.1002/2017GC007233

Li et al., 2017 JGR

Li, Y.^, Dasgupta, R. & Tsuno, K.^ (2017). Carbon contents in reduced basalts at graphite saturation: Implications for the degassing of Mars, Mercury, and the Moon. Journal of Geophysical Research - Planets 122: 1300-1320. doi:10.1002/2017JE005289

Duncan et al., 2017 EPSL

Duncan, M.S.*, Dasgupta, R., Tsuno, K.^ (2017). Experimental determination of CO2 content at graphite saturation along a natural basalt-peridotite melt join: Implications for the fate of carbon in terrestrial magma oceans. Earth and Planetary Science Letters 466: 115-128. doi:10.1016/j.epsl.2017.03.008

Duncan and Dasgupta, 2017 NatGeo

Duncan, M.S.* & Dasgupta, R. (2017). Rise of Earth's atmospheric oxygen controlled by efficient subduction of organic carbon. Nature Geoscience 10: 387-392. doi:10.1038/NGEO2939

Ding and Dasgupta, 2017 EPSL

Ding, S.* & Dasgupta, R. (2017). The fate of sulfide during decompression melting of peridotite – implications for sulfur inventory of the MORB-source depleted upper mantle. Earth and Planetary Science Letters 459: 183-195. doi:10.1016/j.epsl.2016.11.020

Carter and Dasgupta, 2016 G-Cubed

Carter, L.B.* & Dasgupta, R. (2016). Effect of melt composition on crustal carbonate assimilation – Implications for the transition from calcite consumption to skarnification and associated CO2 degassing. Geochemistry, Geophysics, Geosystems 17: 3893-3916. doi:10.1002/2016GC006444

Li et al., 2016 Nature

Li, Y.^, Dasgupta, R., Tsuno, K.^, Monteleone, B. & Shimizu, N. (2016). Carbon and sulfur budget of the silicate Earth explained by accretion of differentiated planetary embryos. Nature Geoscience 9: 781-785. doi:10.1038/ngeo2801

Carter and Dasgupta, 2015 EPSL

Carter, L.B.* & Dasgupta, R. (2015). Hydrous basalt-limestone interaction at crustal conditions: implications for generation of ultracalcic melts and outflux of CO2 at volcanic arcs. Earth and Planetary Science Letters 427: 202-214. doi:10.1016/j.epsl.2015.06.053

Li et al., 2015 EPSL

Li, Y.^, Dasgupta, R. & Tsuno, K.^ (2015). The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy melt-silicate melt systems at 3 GPa and 1600 °C – Implications for core-mantle differentiation and degassing of magma oceans and reduced planetary mantles. Earth and Planetary Science Letters 415: 54-66. doi:10.1016/j.epsl.2015.01.017

Chi et al., 2014 GCA

Chi, H.*, Dasgupta, R., Duncan, M.S.* & Shimizu, N. (2014). Partitioning of carbon between Fe-rich alloy melt and silicate melt in a magma ocean – implications for the abundance and origin of volatiles in Earth, Mars, and the Moon. Geochimica et Cosmochimica Acta 139: 447-471. doi:10.1016/j.gca.2014.04.046

Lee et al., 2013 Geosphere

Lee, C-T.A., Shen, B., Slotnik, B.S., Liao, K., Dickens, G.R., Yokoyama, Y., Lenardic, A., Dasgupta, R., Jellinek, M., Lackey, J., Schneider, T. & Tice, M. (2013). Continent-island arc fluctuations, growth of crustal carbonates, and long-term climate change. Geosphere 9: 21-36. doi:10.1130/GES00822.1

Dasgupta et al., 2013 GCA

Dasgupta, R., Chi, H.*, Shimizu, N., Buono, A. & Walker, D. (2013). Carbon solution and partitioning between metallic and silicate melts in a shallow magma ocean: implications for the origin and distribution of terrestrial carbon. Geochimica et Cosmochimica Acta 102: 191-202. doi:10.1016/j.gca.2012.10.011

Dasgupta, 2013 RiMG

Dasgupta, R. (2013). Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Reviews in Mineralogy and Geochemistry 75: 183-229. doi:10.2138/rmg.2013.75.7

Sanloup et al., 2011 EPSL

Sanloup, C., van Westrenen, W., Dasgupta, R., Maynard-Casely, H. & Perrillat, J.-P. (2011). Compressibility change in iron-rich melt and implications for core formation models. Earth and Planetary Science Letters 306: 118-122doi:10.1016/j.epsl.2011.03.039

Dasgupta and Hirschmann, 2010 EPSL

Dasgupta, R. & Hirschmann, M.M. (2010). The deep carbon cycle and melting in Earth's interior. Earth and Planetary Science Letters (Frontiers) 298: 1-13. doi:10.1016/j.epsl.2010.06.039

Dasgupta et al., 2009 GCA

Dasgupta, R., Buono, A., Whelan, G. & Walker, D. (2009). High-pressure melting relations in Fe-C-S systems: implications for formation, evolution, and structure of metallic cores in planetary bodies. Geochimica et Cosmochimica Acta 73: 6678-6691. doi:10.1016/j.gca.2009.08.001

Hirschmann and Dasgupta, 2009 CG

Hirschmann, M.M. & Dasgupta, R. (2009). The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chemical Geology 262: 4-16. doi:10.1016/j.chemgeo.2009.02.008