Modern Earth Processes

Johnson et al., 2024 AmMin

Johnson, A.*, Dasgupta, R., Costin, G. & Tsuno, K.^ (2024). Electron Probe Microanalysis of Trace Sulfur in Basaltic Glasses and Silicate Minerals. American Mineralogist 109: 2162–2172. doi:10.2138/am-2023-9157

Dasgupta and Aubaud, 2024 TrGeo

Dasgupta, R. & Aubaud, C. (In Press). Major volatiles in the Earth's mantle beneath mid-ocean ridges and intraplate ocean islands. Treatise on Geochemistry. doi:10.1016/B978-0-323-99762-1.00090-5

Xue et al., 2024 GCA

Xue, S.', Dasgupta, R., Ling, M.X., Sun, W. & Lee, C-T.A. (2024). The effect of fluorine on mineral-carbonatitic melt partitioning of trace elements–Implications for critical mineral deposits. Geochimica et Cosmochimica Acta 379: 53-75. doi:10.1016/j.gca.2024.06.028

Lara and Dasgupta, 2023 JPetrol

Lara, M.* & Dasgupta, R. (2023). Effects of H2O–CO2 fluids, temperature, and peridotite fertility on partial melting in mantle wedges and generation of primary arc basalts. Journal of Petrology 64: egad047. doi:10.1093/petrology/egad047

Keller et al., 2023 NatGeo

Keller, D.S., Tassara, S., Robbins, L.J., Lee, C-T.A., Ague, J.J. & Dasgupta, R. (2023). Links between large igneous province volcanism and subducted iron formations. Nature Geoscience 16: 527–533. doi:10.1038/s41561-023-01188-1

Sun and Dasgupta, 2023 EPSL

Sun, C.^ & Dasgupta, R. (2023). Carbon budget of the Earth’s deep mantle constrained by petrogenesis of silica-poor ocean island basalts. Earth and Planetary Science Letters 611: 118135. doi:10.1016/j.epsl.2023.118135

Eguchi and Dasgupta, 2022 EPSL

Eguchi, J.* & Dasgupta, R. (2022). Cycling of CO2 and H2O constrained by experimental investigation of a model ophicarbonate at deep subduction zone conditions. Earth and Planetary Science Letters 600: 117866. doi:10.1016/j.epsl.2022.117866

Lara and Dasgupta, 2022 EPSL

Lara, M.* & Dasgupta, R. (2022). Carbon recycling efficiency in subduction zones constrained by the effects of H2O-CO2 fluids on partial melt compositions in the mantle wedge. Earth and Planetary Science Letters 588: 117578. doi:10.1016/j.epsl.2022.117578

Chowdhury et al., 2021 GCA

Chowdhury, P.*, Dasgupta, R., Phelps, P.R., Lee, C-T.A. & Anselm, R.A.’ (2021). Partitioning of chalcophile and highly siderophile elements (HSEs) between sulfide and carbonated melts – Implications for HSE systematics of kimberlites, carbonatites, and melt metasomatized mantle domains. Geochimica et Cosmochimica Acta 305: 130-147. doi:10.1016/j.gca.2021.05.006

Saha et al., 2021 EPSL

Saha, S.*, Peng, Y., Dasgupta, R., Mookherjee, M. & Fischer, K.M. (2021). Assessing the presence of volatile-bearing mineral phases in the cratonic mantle as a possible cause of mid-lithospheric discontinuities. Earth and Planetary Science Letters 553: 116602. doi:10.1016/j.epsl.2020.116602

Lara and Dasgupta, 2020 GCA

Lara, M.* & Dasgupta, R. (2020). Partial melting of a depleted peridotite metasomatized by a MORB-derived hydrous silicate melt - Implications for subduction zone magmatism. Geochimica et Cosmochimica Acta 290: 137-161. doi:10.1016/j.gca.2020.09.001

Sun and Dasgupta, 2020 EPSL

Sun, C.^ & Dasgupta, R. (2020). Thermobarometry of CO2-rich, silica-undersaturated melts constrains cratonic lithosphere thinning through time in areas of kimberlitic magmatism. Earth and Planetary Science Letters 550: 116549. doi:10.1016/j.epsl.2020.116549

Muth et al., 2020 Geophys. Monograph

Muth, M.+, Duncan, M.S.* & Dasgupta, R. (2020). The effect of variable Na/K on the CO2 content in slab-derived rhyolitic melts. In Manning, C., Lin, J.-F., and Mao, W. (Eds.) Carbon in Earth’s Interior. Geophysical Monograph 249: 195-208. doi:10.1002/9781119508229.ch17

Chowdhury and Dasgupta, 2020 GCA

Chowdhury, P.* & Dasgupta, R. (2020). Sulfur extraction via carbonated melts from sulfide-bearing mantle lithologies - Implications for deep sulfur cycle and mantle redox. Geochimica et Cosmochimica Acta 269: 376-397. doi:10.1016/j.gca.2019.11.002

Chu et al., 2019 AJS

Chu, X.^, Lee, C-T.A., Dasgupta, R. & Cao, W. (2019). The contribution to exogenic CO2 by contact metamorphism at continental arcs: A coupled model of fluid flux and metamorphic decarbonation. American Journal of Science 319: 631-657. doi:10.2475/08.2019.01

Saha and Dasgupta, 2019 JGR: Solid Earth

Saha, S.* & Dasgupta, R. (2019). Phase relations of a depleted peridotite fluxed by a CO2-H2O fluid - Implications for the stability of partial melts versus volatile-bearing mineral phases in the cratonic mantle. Journal of Geophysical Research: Solid Earth 124: 10089-10106. doi:10.1029/2019JB017653

Lee et al., 2019 CUP

Lee, C-T.A., Jiang, H., Dasgupta, R. & Torres, M. (2019). A framework for understanding whole Earth carbon cycling. In Orcutt, B., Daniel, I., and Dasgupta, R. (Eds.) Deep Carbon: Past to Present. Cambridge University Press, Cambridge, pp. 313-357. doi:10.1017/9781108677950.011

Chowdhury and Dasgupta, 2019 CG

Chowdhury, P.* & Dasgupta, R. (2019). Effect of sulfate on the basaltic liquidus and sulfur concentration at anhydrite saturation (SCAS) of hydrous basalts – Implications for sulfur cycle in subduction zones. Chemical Geology 522: 162-174. doi:10.1016/j.chemgeo.2019.05.020

Fuentes et al., 2019 EPSL

Fuentes, J., Crowley, J., Dasgupta, R. & Mitrovica, J. (2019). The influence of plate tectonic style on melt production and CO2 outgassing flux at mid-ocean ridges. Earth and Planetary Science Letters 511: 154-163. doi:10.1016/j.epsl.2019.01.020

Sun and Dasgupta, 2019 EPSL

Sun, C.^ & Dasgupta, R. (2019). Slab-mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth and Planetary Science Letters 506: 38-52. doi:10.1016/j.epsl.2018.10.028