Lara, M.* & Dasgupta, R. (2023). Effects of H2O–CO2 fluids, temperature, and peridotite fertility on partial melting in mantle wedges and generation of primary arc basalts. Journal of Petrology 64: egad047. doi:10.1093/petrology/egad047
Keller et al., 2023 NatGeo
Keller, D.S., Tassara, S., Robbins, L.J., Lee, C-T.A., Ague, J.J. & Dasgupta, R. (2023). Links between large igneous province volcanism and subducted iron formations. Nature Geoscience 16: 527–533. doi:10.1038/s41561-023-01188-1
Eguchi and Dasgupta, 2022 EPSL
Eguchi, J.* & Dasgupta, R. (2022). Cycling of CO2 and H2O constrained by experimental investigation of a model ophicarbonate at deep subduction zone conditions. Earth and Planetary Science Letters 600: 117866. doi:10.1016/j.epsl.2022.117866
Lara and Dasgupta, 2022 EPSL
Lara, M.* & Dasgupta, R. (2022). Carbon recycling efficiency in subduction zones constrained by the effects of H2O-CO2 fluids on partial melt compositions in the mantle wedge. Earth and Planetary Science Letters 588: 117578. doi:10.1016/j.epsl.2022.117578
Chowdhury et al., 2022 GCA
Chowdhury, P.*, Dasgupta, R., Phelps, P.R., Costin, G. & Lee, C-T.A. (2022). Oxygen fugacity range of subducting crust inferred from fractionation of trace elements during fluid-present slab melting in the presence of anhydrite versus sulfide. Geochimica et Cosmochimica Acta 325: 214-231. doi:10.1016/j.gca.2022.02.030
Lara and Dasgupta, 2020 GCA
Lara, M.* & Dasgupta, R. (2020). Partial melting of a depleted peridotite metasomatized by a MORB-derived hydrous silicate melt - Implications for subduction zone magmatism. Geochimica et Cosmochimica Acta 290: 137-161. doi:10.1016/j.gca.2020.09.001
Sun and Dasgupta, 2020 EPSL
Sun, C.^ & Dasgupta, R. (2020). Thermobarometry of CO2-rich, silica-undersaturated melts constrains cratonic lithosphere thinning through time in areas of kimberlitic magmatism. Earth and Planetary Science Letters 550: 116549. doi:10.1016/j.epsl.2020.116549
Muth et al., 2020 Geophys. Monograph
Muth, M.+, Duncan, M.S.* & Dasgupta, R. (2020). The effect of variable Na/K on the CO2 content in slab-derived rhyolitic melts. In Manning, C., Lin, J.-F., and Mao, W. (Eds.) Carbon in Earth’s Interior. Geophysical Monograph 249: 195-208. doi:10.1002/9781119508229.ch17
Chowdhury and Dasgupta, 2020 GCA
Chowdhury, P.* & Dasgupta, R. (2020). Sulfur extraction via carbonated melts from sulfide-bearing mantle lithologies - Implications for deep sulfur cycle and mantle redox. Geochimica et Cosmochimica Acta 269: 376-397. doi:10.1016/j.gca.2019.11.002
Eguchi et al., 2020 Nature Geosci
Eguchi, J.*, Seales, J. & Dasgupta, R. (2020). Great oxidation and Lomagundi events linked by deep cycling and increased degassing of carbon. Nature Geoscience 31: 71-76. doi:10.1038/s41561-019-0492-6
Chu et al., 2019 AJS
Chu, X.^, Lee, C-T.A., Dasgupta, R. & Cao, W. (2019). The contribution to exogenic CO2 by contact metamorphism at continental arcs: A coupled model of fluid flux and metamorphic decarbonation. American Journal of Science 319: 631-657. doi:10.2475/08.2019.01
Saha and Dasgupta, 2019 JGR: Solid Earth
Saha, S.* & Dasgupta, R. (2019). Phase relations of a depleted peridotite fluxed by a CO2-H2O fluid - Implications for the stability of partial melts versus volatile-bearing mineral phases in the cratonic mantle. Journal of Geophysical Research: Solid Earth 124: 10089-10106. doi:10.1029/2019JB017653
Lee et al., 2019 CUP
Lee, C-T.A., Jiang, H., Dasgupta, R. & Torres, M. (2019). A framework for understanding whole Earth carbon cycling. In Orcutt, B., Daniel, I., and Dasgupta, R. (Eds.) Deep Carbon: Past to Present. Cambridge University Press, Cambridge, pp. 313-357. doi:10.1017/9781108677950.011
Chowdhury and Dasgupta, 2019 CG
Chowdhury, P.* & Dasgupta, R. (2019). Effect of sulfate on the basaltic liquidus and sulfur concentration at anhydrite saturation (SCAS) of hydrous basalts – Implications for sulfur cycle in subduction zones. Chemical Geology 522: 162-174. doi:10.1016/j.chemgeo.2019.05.020
Sun and Dasgupta, 2019 EPSL
Sun, C.^ & Dasgupta, R. (2019). Slab-mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth and Planetary Science Letters 506: 38-52. doi:10.1016/j.epsl.2018.10.028
Carter and Dasgupta, 2018 CG
Carter, L.B.* & Dasgupta, R. (2018). Decarbonation in the Ca-Mg-Fe carbonate system at mid-crustal pressure as a function of temperature and assimilation with arc magmas – Implications for long-term climate. Chemical Geology 492: 30-48. doi:10.1016/j.chemgeo.2018.05.024
Duncan and Dasgupta, 2017 NatGeo
Duncan, M.S.* & Dasgupta, R. (2017). Rise of Earth's atmospheric oxygen controlled by efficient subduction of organic carbon. Nature Geoscience 10: 387-392. doi:10.1038/NGEO2939
Mallik et al., 2016 GCA
Mallik, A.*, Dasgupta, R., Tsuno, K.^ & Nelson, J.' (2016). Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones. Geochimica et Cosmochimica Acta 195: 226-243. doi:10.1016/j.gca.2016.08.018
Carter and Dasgupta, 2016 G-Cubed
Carter, L.B.* & Dasgupta, R. (2016). Effect of melt composition on crustal carbonate assimilation – Implications for the transition from calcite consumption to skarnification and associated CO2 degassing. Geochemistry, Geophysics, Geosystems 17: 3893-3916. doi:10.1002/2016GC006444
Carter and Dasgupta, 2015 EPSL
Carter, L.B.* & Dasgupta, R. (2015). Hydrous basalt-limestone interaction at crustal conditions: implications for generation of ultracalcic melts and outflux of CO2 at volcanic arcs. Earth and Planetary Science Letters 427: 202-214. doi:10.1016/j.epsl.2015.06.053