Deep Carbon Cycle

Lee et al., 2019 CUP

Lee, C-T.A., Jiang, H., Dasgupta, R. & Torres, M. (2019). A framework for understanding whole Earth carbon cycling. In Orcutt, B., Daniel, I., and Dasgupta, R. (Eds.) Deep Carbon: Past to Present. Cambridge University Press, Cambridge, pp. 313-357. doi:10.1017/9781108677950.011

Dasgupta and Grewal, 2019 CUP

Dasgupta, R. & Grewal, D.S.* (2019). Origin and early differentiation of carbon and associated life-essential volatile elements on Earth. In Orcutt, B., Daniel, I., and Dasgupta, R. (Eds.) Deep Carbon: Past to Present. Cambridge University Press, Cambridge, pp. 4-39. doi:10.1017/9781108677950.002

Fuentes et al., 2019 EPSL

Fuentes, J., Crowley, J., Dasgupta, R. & Mitrovica, J. (2019). The influence of plate tectonic style on melt production and CO2 outgassing flux at mid-ocean ridges. Earth and Planetary Science Letters 511: 154-163. doi:10.1016/j.epsl.2019.01.020

Grewal et al., 2019 SciAdv

Grewal, D.S.*, Dasgupta, R., Sun, C.^, Tsuno, K.^ & Costin, G. (2019). Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Science Advances 5: eaau3669. doi: 10.1126/sciadv.aau3669

Sun and Dasgupta, 2019 EPSL

Sun, C.^ & Dasgupta, R. (2019). Slab-mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth and Planetary Science Letters 506: 38-52. doi:10.1016/j.epsl.2018.10.028

Eguchi and Dasgupta, 2018 GPL

Eguchi, J.* & Dasgupta, R. (2018). Redox state of the convective mantle from CO2-trace element systematics of oceanic basalts. Geochemical Perspective Letters 8: 17-21. doi: 10.7185/geochemlet.1823

Tsuno et al., 2018 GCA

Tsuno, K.^, Grewal, D.S.* & Dasgupta, R. (2018). Core-mantle fractionation of carbon in Earth and Mars: The effects of sulfur. Geochimica et Cosmochimica Acta 238: 477-495. doi: 10.1016/j.gca.2018.07.010

Eguchi and Dasgupta, 2018 CG

Eguchi, J.* & Dasgupta, R. (2018). A CO2 solubility model for silicate melts from fluid saturation to graphite or diamond saturation. Chemical Geology 487: 23-38. doi:10.1016/j.chemgeo.2018.04.012

Carter and Dasgupta, 2018 CG

Carter, L.B.* & Dasgupta, R. (2018). Decarbonation in the Ca-Mg-Fe carbonate system at mid-crustal pressure as a function of temperature and assimilation with arc magmas – Implications for long-term climate. Chemical Geology 492: 30-48. doi:10.1016/j.chemgeo.2018.05.024

Saha et al., 2018 G-Cubed

Saha, S.*, Dasgupta, R. & Tsuno, K.^ (2018). High pressure-temperature phase relations of a depleted peridotite fluxed by CO2-H2O-bearing siliceous melts and the origin of mid-lithospheric discontinuity. Geochemistry, Geophysics, Geosystems 19: 595-620. doi:10.1002/2017GC007233

Li et al., 2017 JGR

Li, Y.^, Dasgupta, R. & Tsuno, K.^ (2017). Carbon contents in reduced basalts at graphite saturation: Implications for the degassing of Mars, Mercury, and the Moon. Journal of Geophysical Research - Planets 122: 1300-1320. doi:10.1002/2017JE005289

Duncan et al., 2017 EPSL

Duncan, M.S.*, Dasgupta, R., Tsuno, K.^ (2017). Experimental determination of CO2 content at graphite saturation along a natural basalt-peridotite melt join: Implications for the fate of carbon in terrestrial magma oceans. Earth and Planetary Science Letters 466: 115-128. doi:10.1016/j.epsl.2017.03.008

Duncan and Dasgupta, 2017 NatGeo

Duncan, M.S.* & Dasgupta, R. (2017). Rise of Earth's atmospheric oxygen controlled by efficient subduction of organic carbon. Nature Geoscience 10: 387-392. doi:10.1038/NGEO2939

Eguchi and Dasgupta, 2017 CMP

Eguchi, J.* & Dasgupta, R. (2017). CO2 content of andesitic melts at graphite saturated upper mantle conditions with implications for redox state of oceanic basalt source regions and remobilization of reduced carbon from subducted eclogite. Contributions to Mineralogy and Petrology 172: 12. doi:10.1007/s00410-017-1330-8

Carter and Dasgupta, 2016 G-Cubed

Carter, L.B.* & Dasgupta, R. (2016). Effect of melt composition on crustal carbonate assimilation – Implications for the transition from calcite consumption to skarnification and associated CO2 degassing. Geochemistry, Geophysics, Geosystems 17: 3893-3916. doi:10.1002/2016GC006444

Li et al., 2016 Nature

Li, Y.^, Dasgupta, R., Tsuno, K.^, Monteleone, B. & Shimizu, N. (2016). Carbon and sulfur budget of the silicate Earth explained by accretion of differentiated planetary embryos. Nature Geoscience 9: 781-785. doi:10.1038/ngeo2801

Carter and Dasgupta, 2015 EPSL

Carter, L.B.* & Dasgupta, R. (2015). Hydrous basalt-limestone interaction at crustal conditions: implications for generation of ultracalcic melts and outflux of CO2 at volcanic arcs. Earth and Planetary Science Letters 427: 202-214. doi:10.1016/j.epsl.2015.06.053

Duncan and Dasgupta, 2015 CMP

Duncan, M.S.* & Dasgupta, R. (2015). Pressure and temperature dependence of CO2 solubility in hydrous rhyolitic melt – Implications for carbon transfer to mantle source of volcanic arcs via partial melt of subducting crustal lithologies. Contributions to Mineralogy and Petrology 169: 54. doi:10.1007/s00410-015-1144-5

Li et al., 2015 EPSL

Li, Y.^, Dasgupta, R. & Tsuno, K.^ (2015). The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy melt-silicate melt systems at 3 GPa and 1600 °C – Implications for core-mantle differentiation and degassing of magma oceans and reduced planetary mantles. Earth and Planetary Science Letters 415: 54-66. doi:10.1016/j.epsl.2015.01.017