Deep Carbon Cycle

Dasgupta and Aubaud, 2024 TrGeo

Dasgupta, R. & Aubaud, C. (In Press). Major volatiles in the Earth's mantle beneath mid-ocean ridges and intraplate ocean islands. Treatise on Geochemistry. doi:10.1016/B978-0-323-99762-1.00090-5

Xue et al., 2024 GCA

Xue, S.', Dasgupta, R., Ling, M.X., Sun, W. & Lee, C-T.A. (2024). The effect of fluorine on mineral-carbonatitic melt partitioning of trace elements–Implications for critical mineral deposits. Geochimica et Cosmochimica Acta 379: 53-75. doi:10.1016/j.gca.2024.06.028

Dasgupta et al., 2024 RiMG

Dasgupta, R., Pathak, D.* & Maurice, M.^ (2024). A framework for the origin and deep cycles of volatiles in rocky exoplanets. Reviews in Mineralogy and Geochemistry 90: 323-373. doi:10.2138/rmg.2024.90.10

Lara and Dasgupta, 2023 JPetrol

Lara, M.* & Dasgupta, R. (2023). Effects of H2O–CO2 fluids, temperature, and peridotite fertility on partial melting in mantle wedges and generation of primary arc basalts. Journal of Petrology 64: egad047. doi:10.1093/petrology/egad047

Sun and Dasgupta, 2023 EPSL

Sun, C.^ & Dasgupta, R. (2023). Carbon budget of the Earth’s deep mantle constrained by petrogenesis of silica-poor ocean island basalts. Earth and Planetary Science Letters 611: 118135. doi:10.1016/j.epsl.2023.118135

Li et al., 2023 EPSL

Li, Y.^, Wiedenbeck, M., Monteleone, B., Dasgupta, R., Costin, G., Gao, Z. & Lu, W. (2023). Nitrogen and carbon fractionation in planetary magma oceans and origin of the superchondritic C/N ratio in the bulk silicate Earth. Earth and Planetary Science Letters 605: 118032. doi:10.1016/j.epsl.2023.118032

Eguchi and Dasgupta, 2022 EPSL

Eguchi, J.* & Dasgupta, R. (2022). Cycling of CO2 and H2O constrained by experimental investigation of a model ophicarbonate at deep subduction zone conditions. Earth and Planetary Science Letters 600: 117866. doi:10.1016/j.epsl.2022.117866

Grewal et al., 2022 EPSL

Grewal, D.S.*, Seales, J.D. & Dasgupta, R. (2022). Internal or external magma oceans in the earliest protoplanets – Perspectives from nitrogen and carbon fractionation. Earth and Planetary Science Letters 598: 117847. doi:10.1016/j.epsl.2022.117847

Lara and Dasgupta, 2022 EPSL

Lara, M.* & Dasgupta, R. (2022). Carbon recycling efficiency in subduction zones constrained by the effects of H2O-CO2 fluids on partial melt compositions in the mantle wedge. Earth and Planetary Science Letters 588: 117578. doi:10.1016/j.epsl.2022.117578

Dasgupta et al., 2022 RiMG

Dasgupta, R., Chowdhury, P.*, Eguchi, J.*, Sun, C.^ & Saha, S.* (2022). Volatile-bearing partial melts in the lithospheric and sub-lithospheric mantle on Earth and other rocky planets. Reviews in Mineralogy and Geochemistry 87: 575-606. doi:10.2138/rmg.2022.87.12

Grewal et al., 2021 EPSL

Grewal, D.S.*, Dasgupta, R. & Aithala, S.’ (2021). The effect of carbon concentration on its core-mantle partitioning behavior in inner Solar System rocky bodies. Earth and Planetary Science Letters 571: 117090. doi:10.1016/j.epsl.2021.117090

Saha et al., 2021 EPSL

Saha, S.*, Peng, Y., Dasgupta, R., Mookherjee, M. & Fischer, K.M. (2021). Assessing the presence of volatile-bearing mineral phases in the cratonic mantle as a possible cause of mid-lithospheric discontinuities. Earth and Planetary Science Letters 553: 116602. doi:10.1016/j.epsl.2020.116602

Sun and Dasgupta, 2020 EPSL

Sun, C.^ & Dasgupta, R. (2020). Thermobarometry of CO2-rich, silica-undersaturated melts constrains cratonic lithosphere thinning through time in areas of kimberlitic magmatism. Earth and Planetary Science Letters 550: 116549. doi:10.1016/j.epsl.2020.116549

Grewal et al., 2020 GCA

Grewal, D.S.*, Dasgupta, R. & Farnell, A.' (2020). The speciation of carbon, nitrogen, and water in magma oceans and its effect on volatile partitioning between major reservoirs of the Solar System rocky bodies. Geochimica et Cosmochimica Acta 280: 281-301. doi:10.1016/j.gca.2020.04.023

Muth et al., 2020 Geophys. Monograph

Muth, M.+, Duncan, M.S.* & Dasgupta, R. (2020). The effect of variable Na/K on the CO2 content in slab-derived rhyolitic melts. In Manning, C., Lin, J.-F., and Mao, W. (Eds.) Carbon in Earth’s Interior. Geophysical Monograph 249: 195-208. doi:10.1002/9781119508229.ch17

Chowdhury and Dasgupta, 2020 GCA

Chowdhury, P.* & Dasgupta, R. (2020). Sulfur extraction via carbonated melts from sulfide-bearing mantle lithologies - Implications for deep sulfur cycle and mantle redox. Geochimica et Cosmochimica Acta 269: 376-397. doi:10.1016/j.gca.2019.11.002

Chu et al., 2019 AJS

Chu, X.^, Lee, C-T.A., Dasgupta, R. & Cao, W. (2019). The contribution to exogenic CO2 by contact metamorphism at continental arcs: A coupled model of fluid flux and metamorphic decarbonation. American Journal of Science 319: 631-657. doi:10.2475/08.2019.01

Saha and Dasgupta, 2019 JGR: Solid Earth

Saha, S.* & Dasgupta, R. (2019). Phase relations of a depleted peridotite fluxed by a CO2-H2O fluid - Implications for the stability of partial melts versus volatile-bearing mineral phases in the cratonic mantle. Journal of Geophysical Research: Solid Earth 124: 10089-10106. doi:10.1029/2019JB017653